Modelling and Forecasting Daily Confirmed Cases of Covid-19 in Africa: A Case Study of ECOWAS Countries.

Nwuju Kingdom & Lekara-bayo Ifeoma Better Department of Mathematics, Rivers State University Port-Harcourt, Nigeria. kingdom,nwuju@ust,edu.ng & lekarabayoifeoma@gmail.com

Abstract

A critical investigation into the rate of spread of Coronavirus Disease 2019 (COVID-19) pandemic has shown that, the daily confirmed cases of the disease tend to follow an upward trend. This paper aimed to develop a suitable Autoregressive Integrated Moving Average (ARIMA) model which can be used to statistically forecast the actual number of confirmed cases of COVID-19 recorded in ECOWAS as a whole. An adequate subset ARIMA (5, 1, 1) model is fitted and discussed. A forecast of 235 days from 11th May 2020 to 31st December 2020, was carried out using the fitted model, and we discovered that the COVID-19 daily confirmed cases may most likely incline over the next six months.

Keywords: ARIMA COVID-19 Forecast, Time Series.

INTRODUCTION

Coronavirus disease 2019 (COVID-19) an illness caused by novel coronavirus now called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) which was first identified amid an outbreak of respiratory illness cases in Wuhan City, Hubei Provence, China, have grown to become a major challenge to the world as more than 200 countries have recorded cases of the disease (WHO, 2020). The World Health Organisation (WHO) on March 11, 2020, has declared the novel coronavirus disease (COVID-19) as a pandemic, as the virus moved from China to almost every part of the world now, with the number of cases as at May 5, 2020 of about four million, one hundred and seventy-eight thousand, and ninety-seven (4,178,097), with about two hundred and eighty-three thousand, seven hundred and thirty-two (283,732) deaths recorded worldwide (Johns Hopkins University, May 2020).

In the Economic Community of West African States (ECOWAS) which includes: Benin, Burkina Faso, Cabo Verde, Core D'Ivoire, Gambia, Ghana, Guinea-Bissau, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone and Togo, the story is not different as the number of confirmed cases of COVID-19 is on a rapid increase by the day. As at 10th May 2020, the total number of confirmed cases of COVID-19 in ECOWAS was about fifteen thousand, six hundred and ninety-one thousand persons (15,691), with an average of three hundred and eight cases per day, while the total number of deaths recorded was about three hundred and seventy-three (373) cases, with an average of twenty-eight deaths per day, in ECOWAS countries. (Johns Hopkins University, 2020).

This paper aims to fit a suitable Autoregressive Integrated Moving Average (ARIMA) model for the total daily confirmed cases as of COVID-19 in ECOWAS as a whole.

LITERATURE REVIEW

Several types of ARIMA models have been proposed by different scholar over the years. The Autoregressive Moving Average (ARMA) approach was introduced by Box and Jenkins. (1970) 1976, in their work on Time series analysis: forecasting and control. This approach is

well tested and efficaciously applied by many scholars. For instance, Masukawa, Moriwaki, Uchimura, Menezes, and Uchimura, (2014) studied the impact of the introduction of a rotavirus vaccine on rates of hospitalization of children less than 5 years old for acute diarrhea.

Michael et al. (2004) studied the impact of illicit drug supply reduction on health and social outcomes: the heroin shortage in the Australian Capital Territory. They observed that a sustainable decline in the supply of heroin, as measured by indicators such as drug purity, is related to changes in drug-related health indicator such as ambulance callouts to heroin overdoses. Mishra P. et al. (2013), carried out a work on instability and forecasting using Box-Jenkin's ARIMA model in area, production and productivity of onion in India. In their work they realised that onion is a bulbous spice crop which is produced and consumed largely in India as well as in the world. It has numerous medicinal uses for treating diseases. Amongst the onion producing countries in the world, India ranks second in area and productivity. The study also focuses on forecasting the cultivated area and production of onion in India using Autoregressive Integrated Moving Average (ARIMA) model. They fitted an ARIMA (1, 1, 4) model to the data on onion production in India and sued this fitted model to forecast onion production for the year 2020 to be about 23.02 million tonnes

In further studies, ARIMA models have been fitted to economic variable. For instance, Abonazel and Abd-Elftah, (2019), used ARIMA models to forecast Egyptian GDP. In their work, they used Box-Jenkins approach to build the appropriate autoregressive-integrated moving average (ARIMA) model for the Egyptian annual GDP data from 1965 to 2016 which was obtained from World-Bank. They discovered that the appropriate statistical model for Egyptian GDP was ARIMA (1, 2, 1). Finally, they used the fitted ARIMA model to forecast the GDP of Egypt for the next ten years. Nwuju and Lekara-Bayo. (2019), used Box-Jenkins ARMA model in their work on intervention analysis of daily South African Rand/Nigerian Naira exchange rates. In their work they carried out a time series plot of a realization of daily exchange rates of South African Rand and Nigerian Naira from April 2017 to December, 2017 which showed the occurrence of an intervention on 4th August, 2017. They fitted an ARMA (12, 2) model to their data and concluded that management of these exchange rates may be made on the basis of their proposed model. Etuk, Attoe, and Essi, (2012) proposed a seasonal Box-Jenkins Model for Nigerian Inflation rate series. They obtained a seasonal difference as well as a non-sessional difference. The correlogram of the differenced series they obtained, revealed a seasonal nature. It also revealed a seasonal autoregressive component. They fitted an $(5, 1, 0)(0, 1, 1)_{12}$ seasonal model which was shown to be adequate for the data studied.

2. Materials and Method

2.1 Data

The data used in this work are of secondary sources. The data analyzed in this work are daily sum of cases and deaths recorded from COVID-19 in ECOWAS as a whole from 21st March, 2020 to 10th May, 2020. These were obtained from European Centre for Disease Prevention and Control (ECDC). The used data is listed in the appendix.

2.2. ARIMA Modelling

Autoregressive Moving-Average (ARMA) Model

A time series $\{X_i\}$ is said to follow an autoregressive moving-average process of order p and q, i.e ARMA (p, q), process if:

$$X_{t} = c + \alpha_{1}X_{t-1} + \alpha_{1}X_{t-2} + \dots + \alpha_{p}X_{t-p} + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \theta_{2}\varepsilon_{t-2} - \dots - \theta_{q}\varepsilon_{t-q}.$$
 1

In summation form we have

$$X_{t} = \sum_{k=1}^{p} \alpha_{k} X_{t-k} - \sum_{k=1}^{q} \theta_{k} \varepsilon_{t-k} + \varepsilon_{t} + c \qquad 2$$

That ARMA models can be extended to non-stationary series by allowing the differencing of the data series resulting to ARIMA(p, d, q): where with three parameters; p is the order of autoregressive, d is the degree of differencing, and q is the order of moving-average. Thus an ARIMA(p, d, q) model is given by:

$$\nabla^{d} X_{t} = \alpha_{1} \nabla^{d} X_{t-1} + \alpha_{2} \nabla^{d} X_{t-2} + \dots + \alpha_{p} \nabla^{d} X_{t-p} + \varepsilon_{t} + \beta_{1} \varepsilon_{t-1} + \beta_{2} \varepsilon_{t-2} + \beta_{p} \varepsilon_{t-p} \qquad 3$$

where { ε_t } is the error term in the equation; a white noise process, a sequence of independently and identically distributed (iid) random variables with $E(\varepsilon_t) = 0$ and $va r(\varepsilon t) = \sigma^2$; i.e. $\varepsilon_t \sim iid N(0, \sigma^2)$, and the α 's β 's and are the model parameters.

The autoregressive (AR) order may be determined by the lap at which the partial autocorrelation function (PACF) cuts off. The moving average (MA) order may be estimated as the lap at which the autocorrelation function (ACF) cuts oft. Estimation of α 's and β 's may be done by the method of lest squares.

1.3 Box0Jenkins Modelling Selection Approach

Figure 1: Flowchart of Stages in the Box-Jenkins iterative approach.

All plots and numerical computations will be carried out using E-views version 10 on a Windows10 personal.

4. Results and Discussion

The time plot of the realization of the time series used in this work is shown in Figure 1. This plot shows that the number of daily confirmed cases of COVID-19 in ECOWAS countries, follows an irregular sig-sag pattern showing both upward and download movement over 51 days. They are adjudged stationary by the Augmented Dickey Fuller Test (See Table 1 & Table

IIARD – International Institute of Academic Research and Development

Page **39**

2). From the estimation of parsimonious models in Table 3, ARIMA (5, 1, 1) was selected to be the best fit model and it was used to carry out future forecast of the sum of daily confirmed cases of COVID-19 in ECOWAS from May 6^{th} to December 31^{st} 2020.

Figure 1: Time plot of daily sum of the actual cases of Covid-19 in ECOWAS States for a period of 51 days.

Table 1: Augmented Dickey-Fuller Test Result of the Actual data showing the nonstationary behaviour of the data.

Null Hypothesis: CASES has a unit root Exogenous: Constant Lag Length: 3 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-	Fuller test statistic	3.624933	1.0000
Test critical values:	1% level	-3.577723	
	5% level	-2.925169	
	10% level	-2.600658	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CASES) Method: Least Squares Date: 05/11/20 Time: 14:33 Sample (adjusted): 5 51 Included observations: 47 after adjustments

Variable	Coefficient Std. Error	t-Statistic	Prob.
CASES(-1)	0.372807 0.102845	3.624933	0.0008
D(CASES(-1))	-1.273229 0.157345	-8.091966	0.0000
D(CASES(-2))	-1.012858 0.184220	-5.498096	0.0000

IIARD – International Institute of Academic Research and Development

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X P-ISSN 2695-1908, Vol 6. No.2 2020 <u>www.iiardpub.org</u>

D(CASES(-3))	-1.005176	0.138733 -7.245382	0.0000
С	-26.00656	32.78820 -0.793168	0.4321
R-squared	0.807603	Mean dependent var	16.57447
Adjusted R-squared	0.789279	S.D. dependent var	286.7381
S.E. of regression	131.6253	Akaike info criterion	12.69808
Sum squared resid	727659.1	Schwarz criterion	12.89491
Log likelihood	-293.4050	Hannan-Quinn criter.	12.77215
F-statistic	44.07452	Durbin-Watson stat	1.878863
Prob(F-statistic)	0.000000		

Figure 2: Time plot of the 1st difference total confirmed cases data.

Table 2: Augmented Dickey-Fuller Test Result of differenced data showing a stationary behaviour.

Null Hypothesis: D(LOGCASE) has a unit root Exogenous: Constant Lag Length: 2 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-	Fuller test statistic	-7.837236	0.0000
Test critical values:	1% level 5% level 10% level	-3.577723 -2.925169 -2.600658	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOGCASE,2) Method: Least Squares Date: 05/11/20 Time: 14:35 Sample (adjusted): 5 51 Included observations: 47 after adjustments

Variable	Coefficien	t Std. Error	t-Statistic	Prob.
D(LOGCASE(-1)) D(LOGCASE(-1),2) D(LOGCASE(-2),2)	-2.987408 1.006529 0.417352	0.381181 0.291509 0.138354	-7.837236 3.452823 3.016551	0.0000 0.0013 0.0043
C	0.203222	0.067139	3.026864	0.0042
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.889697 0.882002 0.428051 7.878783 -24.71972 115.6123 0.000000	Mean dep S.D. depo Akaike in Schwarz Hannan-O Durbin-W	pendent var endent var nfo criterion criterion Quinn criter. Vatson stat	-0.022676 1.246114 1.222116 1.379575 1.281369 1.947444

	Correlogram	of C	(CASES	5)		
Date: 05/11/20 Time: 14:39 Sample: 1 51 Included observations: 50						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	-0.676 0.388 -0.514 0.598 -0.427 -0.249 0.358 -0.289 0.188 -0.210 0.214 -0.122 0.038 -0.023 0.040 -0.034 -0.034 -0.034 -0.034 -0.029 -0.015 -0.015	-0.676 -0.129 -0.571 0.004 0.077 -0.224 -0.076 0.074 -0.018 0.120 0.031 -0.115 0.135 -0.082 0.037 0.081 -0.081 -0.051 0.024 -0.008 0.024 -0.008 0.024 -0.008	24.276 32.422 47.009 67.234 77.765 80.815 84.572 92.518 97.819 100.11 103.05 106.18 107.23 107.33 107.33 107.37 107.50 107.69 107.69 107.63 108.42 108.49 108.51 108.51 108.51	0.000 0.000

Figure 3: Correlogram of 1st difference of the actual data.

Table 3: Estimation of parsimonious models from the correlogram showing some significant models.

Dependent Variable: CASES

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 05/11/20 Time: 14:47

Sample: 151

Included observations: 51

Convergence achieved after 427 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient Std. Error		t-Statistic	Prob.
С	847.0849	939.9242	0.901227	0.3727
AR(1)	1.244233	0.103992	11.96474	0.0014
AR(2)	0.138427	0.265774	0.520847	0.6053
AR(3)	-0.002403	0.272712	-0.008810	0.9930
AR(4)	0.811349	0.151398	5.359051	0.0000
AR(5)	-0.245029	0.107954	-2.269749	0.0001
AR(8)	-0.065950	0.150028	-0.439585	0.6625
MA(1)	-0.980598	0.325502	-3.012570	0.0157
MA(3)	-0.322258	6.016099	-0.053566	0.9575
SIGMASQ	16572.11	16451.63	1.007323	0.3197
R-squared	0.821859	Mean dependent var		307.6667
Adjusted R-squared	0.782755	S.D. dep	308.0400	
S.E. of regression	143.5761	Akaike i	nfo criterion	13.13888

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X P-ISSN 2695-1908, Vol 6. No.2 2020 <u>www.iiardpub.org</u>

Sum squared resid Log likelihood F-statistic Prob(F-statistic)	845177.5 -325.0415 21.01721 0.000000	Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	13.51767 13.28363 1.967714
Inverted AR Roots Inverted MA Roots	1.00+.04i 0493i 1.00	1.0004i .1742i 04+.93i39 1654i16+.54i	.17+.42i 97

ARIMA (5, 1, 1) was chosen as the best fitted model.

The equation representing the model is: $\nabla X_t = 1.244233 \nabla X_{t-1} - 0.245029 \nabla X_{t-5} - 0.980598 \varepsilon_{t-1} + \varepsilon_t$ 4 Future forecast for 234 (May 11, 2020 to December 31, 2020) days was carried out using the on E-views using the model in (4) above. This was achieved by entering the command has achieved by entering the command has achieved by entering the command

ls casesf c @trend @expand(@month, @dropfirst)

Figure 4: Actual and fitted graph for the confirmed cases data.

Residual Diagnostics

Correlogram of Residuals							
Date: 05/11/20 Time: 15:37 Sample: 1 51 Included observations: 51 Q-statistic probabilities adjusted for 4 ARMA terms							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
		$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\21\\3\\14\\15\\16\\17\\18\\9\\20\\21\\22\\23\\24\end{array}$	-0.024 0.102 -0.229 -0.041 0.110 0.123 0.144 -0.192 0.118 -0.114 0.269 0.132 -0.085 -0.139 -0.085 -0.139 -0.062 0.110 0.115 0.130 -0.117 -0.017 -0.023 -0.043	-0.024 0.101 -0.227 -0.106 0.002 0.083 0.095 0.121 -0.189 0.163 0.003 0.215 0.185 -0.214 -0.042 -0.012 -0.065 -0.012 -0.065 -0.012 0.065 -0.012 0.065 -0.012 0.065 -0.012 0.065 -0.012 -0.057 -0.047 0.059 0.019 -0.047 -0.047 -0.047 -0.047 -0.059 0.019 -0.047 -0.047 -0.047 -0.042 -0.057 -0.042 -0.055 -0.042 -0.055 -0.047 -0.045 -0.047 -0.045 -0.047 -0.047 -0.045 -0.047 -0.045 -0.047 -0.047 -0.047 -0.047 -0.045 -0.047 -0.0	0.0304 0.6006 3.5525 3.9637 4.0636 4.7868 5.7091 7.0122 9.3809 10.296 11.174 16.203 17.437 17.985 28.533 20.026 20.334 20.734 20.345 23.321 24.562 24.590 24.639	0.044 0.091 0.127 0.135 0.095 0.131 0.040 0.042 0.052 0.070 0.067 0.087 0.109 0.105 0.105 0.105 0.105 0.137 0.207	

Figure 5: Correlogram of residuals from ARIMA (5, 1, 1) showing no significant lag spike.

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X P-ISSN 2695-1908, Vol 6. No.2 2020 <u>www.iiardpub.org</u>

1 2 3 4 5	43.0000 59.0000	37.8189	E 40440	
2 3 4 5	59.0000		5.18113	I I 🛉 I
3 4 5		50.8647	8.13527	i ∳ i
4 5	30.0000	40.7764	-10.7764	I I 4 I
5	44.0000	43.2616	0.73842	
	115.000	55.2506	59.7494	
6	65.0000	88,9889	-23.9889	· • • • •
7	142.000	61.9138	80.0862	· D• ·
8	41.0000	94.5936	-53.5936	
9	112.000	138.210	-26.2101	
10	59.0000	90.5579	-31.5579	
11	114.000	145.125	-31.1246	
12	47 0000	54 9232	-7 92315	
13	190,000	110 799	79 2007	
14	80,0000	86 8957	-6.89567	
15	91,0000	130.004	-39 0042	i 7 i
16	116 000	65 8642	50 1359	
17	166.000	104 399	28 3970	
10	260.000	194.300	-20.3079	
10	209.000	149 500	24 4007	
19	114.000	146.000	-34.4997	
20	210.000	160.763	49.2372	
21	249.000	213.627	35.3728	· · · · ·
22	144.000	306.014	-162.014	
23	238.000	140.017	97.9831	' Z '
24	273.000	241.968	31.0317	· · ·
25	138.000	280.984	-142.984	
26	166.000	160.263	5.73660	' * '
27	167.000	237.764	-70.7637	· • • •
28	160.000	248.097	-88.0969	
29	184.000	115.699	68.3011	· •
30	367.000	154.481	212.519	· · · · · · · · · · · · · · · · · · ·
31	403.000	206.732	196.268	
32	153.000	249.122	-96.1217	
33	231.000	245.636	-14.6357	יאי
34	339.000	390.854	-51.8543	· الا <i>م</i> ر ·
35	247.000	406.525	-159.525	
36	456.000	163.155	292.845	
37	252.000	297.940	-45.9400	
38	532.000	374.488	157.512	
39	208.000	337.752	-129.752	
40	467.000	476.025	-9.02530	1 1 1
41	407.000	306.945	100.055	· \•
42	880.000	558.768	321.232	· · · >•
43	508.000	373.028	134.972	
44	535.000	617.832	-82.8319	
45	371,000	549,172	-178,172	⊷
46	1117.00	890,120	226.880	
47	394,000	640.976	-246,976	
48	835,000	602,393	232 607	
49	711.000	525.364	185,636	
50	1629.00	1177.49	451.514	
51	823,000	698,202	124 798	

 Table 4: Actual, Fitted, and Residuals of the model.

Page **46**

Figure 6: Actual, Fitted, and Residual plot of the model.

Figure 7: Histogram: normality test of residual for fitted confirmed cases data.

Figure 8: Plot of actual and forecasted values for confirmed cases showing an upward trend over the next 7 months.

5. Conclusion

Critical investigation into the rate of spread of COVID-19 pandemic has shown that, that the daily confirmed cases of the disease tends to follow an upward trend. This paper aimed to developing a suitable ARIMA model which can be used to fit a most appropriate model to statistically forecast the actual number of confirmed cases of COVID-19 recorded in ECOWAS. An adequate subset ARIMA (5, 1, 1) model is fitted to the data. A forecast of 235 days from 11th May, 2020 to 31th December, 2020, was carried out and we discovered that, the COVID-19 daily confirmed cases may likely incline over the next six months.

We therefore recommend that further studies should be carried out to understand and model the mortality rate as well as survival rate of COVID-19 in AFRICA and the world at large, with respect to age, sex, geographical area etc.

References

- Abonazel, M. R., & Abd-Elftah, A. I. (2019). Forecasting Egyptian GDP using ARIMA models. *Reports on Economics and Finance*, 5(1), 35–47. https://doi.org/10.12988/ref.2019.81023
- Box G, and Jenkins G., (1970). Time Series Analysis: Forecasting and Control, San Francisco, *CA: Holden-Day*, (1970)
- Box G, and Jenkins G., (1976). Time Series Analysis: Forecasting and Control, 2nd ed. San Francisco, *CA: Holden-Day*, (1970).
- Etuk, E. H, Attoe, S. A., & Essi, I. D. (2012). A Seasonal Box-Jenkins Model for Nigerian Inflation Rate Series. *Journal of Mathematics Research*, 4(4), 107–113. https://doi.org/10.5539/jmr.v4n4p107.
- European Centre for Disease Prevention and Control (ECDC) http://www.ecdc.europa.eu/en.publications-data/download-todays-datageographical-distribution-covid-19-cases-worldwide

Johns Hopkins University: Coronavirus Resource Centre www.coronavirus.jhu.edu

Masukawa, M. T., Moriwaki, A. M., Uchimura, N. S., Menezes, d. S. E. and Uchimura, T. T. (2014). Intervention analysis of introduction of rotravirus vaccine on hospital admissions rates to acute diarrhea. *Cadernos de Saude Publica*, *30*(*10*).

Page **48**

Michael Smithson, Michael McFadden, Sue-Ellen Mwesigye, Tony Casey (2014). The impact of Illicit drugs supply reduction on health and social outcomes: *the horizon shortage in the Australian capital territory. Addition 93 (3), 340-348, 2014.*

Nwuju, K., Lekara-Bayo, I.B & Etuk, E.H (2019). Pages 17-26 (2019-4008).

World Health Organisation (2020, May 10) <u>https://www.who.int/emergencies/diseases/novel</u> <u>coronavirus-2019/situation-reports</u>.

Acknowledgements:

We would like to expresses our great appreciation to Mr, Sixtus Cyprain Onyekwere of Portsmouth University, UK, for his valuable and constructive suggestions during the planning and development of this research work, his willingness to give his time so graciously has been very much appreciated.

		Total			Total
		Confirmed			Confirmed
		Cases of			Cases of
		COVID-19			COVID-19
~ ~ ~		in	~ ~ ~		in
S/N	DATE	ECOWAS	S/N	DATE	ECOWAS
1	3/21/2020	43	26	4/15/2020	166
2	3/22/2020	59	27	4/16/2020	167
3	3/23/2020	30	28	4/17/2020	160
4	3/24/2020	44	29	4/18/2020	184
5	3/25/2020	115	30	4/19/2020	367
6	3/26/2020	65	31	4/20/2020	403
7	3/27/2020	142	32	4/21/2020	153
8	3/28/2020	41	33	4/22/2020	231
9	3/29/2020	112	34	4/23/2020	339
10	3/30/2020	59	35	4/24/2020	247
11	3/31/2020	114	36	4/25/2020	456
12	4/1/2020	47	37	4/26/2020	252
13	4/2/2020	190	38	4/27/2020	532
14	4/3/2020	80	39	4/28/2020	208
15	4/4/2020	91	40	4/29/2020	467
16	4/5/2020	116	41	4/30/2020	407
17	4/6/2020	166	42	5/1/2020	880
18	4/7/2020	269	43	5/2/2020	508
19	4/8/2020	114	44	5/3/2020	535
20	4/9/2020	210	45	5/4/2020	371
21	4/10/2020	249	46	5/5/2020	1117
22	4/11/2020	144	47	5/6/2020	394
23	4/12/2020	238	48	5/7/2020	835
24	4/13/2020	273	49	5/8/2020	711
25	4/14/2020	138	50	5/9/2020	1629
		-	51	5/10/2020	823

Appendix 1: Sum of daily confirmed cases of COVID-19 In ECOWAS.

zhhe	nuix 2; Sum	or uany forecasted con	in meu case		
		Forecasted Total			Forecasted Total
S/N	DATE	Confirmed Cases of	S/N	DATE	Confirmed Cases
		COVID-19 in			of COVID-19 in
1	5/11/2020	ECOWAS	20	<u> </u>	ECOWAS
1	5/11/2020	644	39	6/18/2020	1199
2	5/12/2020	659	40	6/19/2020	1213
3	5/13/2020	673	41	6/20/2020	1228
4	5/16/2020	688	42	6/21/2020	1242
5	5/15/2020	703	43	6/22/2020	1257
5	5/16/2020	717	44	6/23/2020	1272
7	5/17/2020	732	45	6/24/2020	1286
8	5/18/2020	746	46	6/25/2020	1301
9	5/19/2020	761	47	6/26/2020	1315
10	5/20/2020	775	48	6/27/2020	1330
11	5/21/2020	790	49	6/28/2020	1345
12	5/22/2020	805	50	6/29/2020	1359
13	5/23/2020	819	51	6/30/2020	1374
14	5/24/2020	834	52	7/1/2020	1388
15	5/25/2020	848	53	7/2/2020	1403
16	5/26/2020	863	54	7/3/2020	1418
17	5/27/2020	878	55	7/4/2020	1432
18	5/28/2020	892	56	7/5/2020	1447
19	5/29/2020	907	57	7/6/2020	1461
20	5/30/2020	921	58	7/7/2020	1476
21	5/31/2020	936	59	7/8/2020	1491
22	6/1/2020	951	60	7/9/2020	1505
23	6/2/2020	965	61	7/10/2020	1520
24	6/3/2020	980	62	7/11/2020	1534
25	6/4/2020	994	63	7/12/2020	1549
26	5/5/2020	1009	64	7/13/2020	1563
20	6/6/2020	1009	65	7/14/2020	1578
27	6/7/2020	1024	66	7/15/2020	1593
20 79	6/8/2020	1053	67	7/16/2020	1607
2) 30	6/0/2020	1055	68	7/17/2020	1622
30 21	6/10/2020	1007	60	7/18/2020	1626
27	6/11/2020	1082	09	7/10/2020	1050
34 22	6/11/2020	1097	70	7/19/2020	1031
22 24	6/12/2020	1111	71	7/20/2020	1000
54 25	6/13/2020	1120	72	7/21/2020	1680
33 26	0/14/2020	1140	/3	7/22/2020	1093
30 27	6/15/2020	1155	74	7/23/2020	1709
51	6/16/2020	1169	75	7/24/2020	1724
38	6/17/2020	1184	76	7/25/2020	1739
S/N	DATE	Forecasted Total Confirmed Cases of	S/N	DATE	Forecasted Total Confirmed Cases

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X P-ISSN 2695-1908, Vol 6. No.2 2020 www.iiardpub.org

		COVID-19	in
		ECOWAS	
77	7/26/2020	1753	
78	7/27/2020	1768	
79	7/28/2020	1782	
80	7/29/2020	1797	
81	7/31/2020	1826	
82	8/1/2020	1841	
83	8/2/2020	1855	
84	8/3/2020	1870	
85	8/4/2020	1885	
86	8/5/2020	1899	
87	8/6/2020	1914	
88	8/7/2020	1928	
89	8/8/2020	1943	
90	8/9/2020	1957	
91	8/10/2020	1972	
92	8/11/2020	1987	
93	8/12/2020	2001	
94	8/13/2020	2016	
95	8/14/2020	2030	
96	8/15/2020	2045	
97	8/16/2020	2060	
98	8/17/2020	2074	
99	8/18/2020	2089	
100	8/19/2020	2103	
101	8/20/2020	2118	
102	8/21/2020	2133	
103	8/22/2020	2147	
104	8/23/2020	2162	
105	8/24/2020	2176	
106	8/25/2020	2191	
107	8/26/2020	2206	
108	8/27/2020	2220	
109	8/28/2020	2235	
110	8/29/2020	2249	
111	8/30/2020	2264	
112	8/31/2020	2278	
113	9/1/2020	2293	
114	9/2/2020	2308	

		of COVID-19 in
		ECOWAS
115	9/3/2020	2322
116	9/4/2020	2337
117	9/5/2020	2351
118	9/6/2020	2366
119	9/7/2020	2381
120	9/8/2020	2395
121	9/9/2020	2410
122	9/10/2020	2424
123	9/11/2020	2439
124	9/12/2020	2454
125	9/13/2020	2468
126	9/14/2020	2483
127	9/15/2020	2497
128	9/16/2020	2512
129	9/17/2020	2527
130	9/18/2020	2541
131	9/19/2020	2556
132	9/20/2020	2570
133	9/21/2020	2585
134	9/22/2020	2600
135	9/23/2020	2614
136	9/24/2020	2629
137	9/25/2020	2643
138	9/26/2020	2658
139	9/27/2020	2672
140	9/28/2020	2687
141	9/29/2020	2702
142	9/30/2020	2716
143	10/1/2020	2731
144	10/2/2020	2745
145	10/3/2020	2760
146	10/10/2020	2775
147	10/5/2020	2789
148	10/6/2020	2804
149	10/7/2020	2818
150	10/8/2020	2833
151	10/9/2020	2848
152	10/10/2020	2862

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X P-ISSN 2695-1908, Vol 6. No.2 2020 <u>www.iiardpub.org</u>

S/N	DATE	Forecasted Total Confirmed Cases of COVID-19 in ECOWAS	S/N	DATE	Forecasted Total Confirmed Cases of COVID-19 in ECOWAS	
153	10/11/2020	2877	191	11/18/2020	3431	
154	10/12/2020	2891	192	11/19/2020	3446	
155	10/13/2020	2906	193	11/20/2020	3460	
156	10/14/2020	2921	194	11/21/2020	3475	
157	10/15/2020	2935	195	11/22/2020	3490	
158	10/16/2020	2950	196	11/23/2020	3504	
159	10/17/2020	2964	197	11/24/2020	3519	
160	10/18/2020	2979	198	11/25/2020	3533	
161	10/19/2020	2994	199	11/26/2020	3548	
162	10/20/2020	3008	200	11/27/2020	3563	
163	10/21/2020	3023	201	11/28/2020	3577	
164	10/22/2020	3037	202	11/29/2020	3592	
165	10/23/2020	3052	203	11/30/2020	3606	
166	10/24/2020	3066	204	12/1/2020	3621	
167	10/25/2020	3081	205	12/2/2020	3636	
168	10/26/2020	3096	206	12/3/2020	3650	
169	10/27/2020	3110	207	12/4/2020	3665	
170	10/28/2020	3125	208	12/5/2020	3679	
171	10/29/2020	3139	209	12/6/2020	3694	
172	10/30/2020	3154	210	12/7/2020	3709	
173	10/31/2020	3169	211	12/8/2020	3723	
174	11/1/2020	3183	212	12/9/2020	3738	
175	11/2/2020	3198	213	12/10/2020	3752	
176	11/3/2020	3212	214	12/11/2020	3767	
177	11/4/2020	3227	215	12/12/2020	3782	
178	11/5/2020	3242	216	12/13/2020	3796	
179	11/6/2020	3256	217	12/14/2020	3811	
180	11/7/2020	3271	218	12/15/2020	3825	
181	11/8/2020	3285	219	12/16/2020	3840	
182	11/9/2020	3300	220	12/17/2020	3854	
183	11/10/2020	3315	221	12/18/2020	3869	
184	11/11/2020	3329	222	12/19/2020	3884	
185	11/12/2020	3344	223	12/20/2020	3898	
186	11/13/2020	3358	224	12/21/2020	3913	
187	11/14/2020	3373	225	12/22/2020	3927	
188	11/15/2020	3388	226	12/23/2020	3942	
189	11/16/2020	3402	227	12/24/2020	3957	
190	11/17/2020	3417	228	12/25/2020	3971	

S/N	DATE	Forecasted Total Confirmed Cases of COVID-19 in ECOWAS
229	12/26/2020	3986
230	12/27/2020	4000
231	12/28/2020	4015
232	12/29/2020	4030
233	12/30/2020	4044
234	12/31/2020	4059
TOTAL		
FORECA	ASTED	
CASES	FOR THE	497385
STUDY	PERIOD	
AVERA	GE DAILY	
FORECA	ASTED	
CASES	FOR THE	2512.045455
STUDY	PERIOD	